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Introduction

A signal representation may provide ‘“analysis” coefficients that are
Inner products with a family of vectors, or “synthesis” coefficients that
compute an approximation by recombining a family of vectors.

Frames are families of vectors where “analysis” and “synthesis”
representations are stable. Signal reconstructions are computed with a
dual frame.

Frames are potentially redundant and thus more general than bases,
with a redundancy measured by frame bounds. They provide the
flexibility needed to build signal representations with unstructured
families of vectors.

Complete and stable wavelet Fourier transforms are constructed with
frames of wavelets.



Frames

Q Frames and Riesz Bases



Stable Analysis and Synthesis Operators

Frame analysis operator

The frame theory was originally developed to reconstruct band-limited signals
from irregularly spaced samples. The following frames definition gives an
energy equivalence to invert the operator ® defined by

vnel, ®f[n] = (f, Pn).
l If satisfied

Definition 5.1: Frame and Riesz Basis. The sequence {¢,}ner IS a
frame of H if there exist two constants B > A > 0 such that

vfeH AlfIP < ) (f, du)l* < BIFI

nel

When A = B, the frame is said to be tight. If the {¢, },,.r are linearly
independent then the frame is not redundant and is called a Riesz basis.

'

Then @ is called a frame analysis operator.




Stable Analysis and Synthesis Operators

Frame analysis operator

nel’

It is a necessary and sufficient condition guaranteeing that @ is invertible on
Its Image space, with a bounded inverse.

Thus, a frame defines a complete and stable signal representation, which
may also be redundant.



Stable Analysis and Synthesis Operators

Frame synthesis operator

Let us consider the space of finite energy coefficients
£2() = {a: ||lall* = Xperlaln]]? < +oo}.

The adjoint ®*of @ is defined over £2(T') and satisfies for any feH and
a € £2(I):

@0,f) = (a,®f) = ) alnl(f, ¢n)" = <Z aln] ) f >

ner nel
The frame synthesisgperator:
d*a = Z a[n] ¢,,.
Leta = of nel’
O Pf = Z Of[n] p, = z<f, bn) Pn-
ner ner

(@ @f ) = (@f, bf) = [DfI2 = ) [(f,du)]?

nel’



Stable Analysis and Synthesis Operators

Frame synthesis operator

| Definition 5.1 (Frame Condition): |

| |
| VFERLANFIZ < )1 dul? < BIFI.
I nel J

(©"Of, f) = (Of, f) F lIOf |12

Definition 5.1(Frame Condition):

VieH, Allf|I? < (0 of, f) < BIIfII%

in finiteUdimension
AllfII> < Af, ) < BIIfII?

= AlflI* < A4llflI* < BIfII?
= A< A <B

f=Af

A; 1s the eigenvalues

A and B are the smallest and
largest eigenvalues in finite
dimension.

The eigenvalues are also called
singular values of & or singular
spectrum.

A and B are the infimum and
supremum  values of the
spectrum of the symmetric
operator ®* P,



Stable Analysis and Synthesis Operators

Frame synthesis operator

| Definition 5.1(Frame Condition): |

| vfeH AlfIP < ) (f, du)l* < BIFI |

L nel’

__________________ —
frame synthesis operator 1 T

frame analysis operator

'a=) alnl g, Stable! Of[n] = (f, o)

nel’

|

Theorem 5.1: The family {¢,,},,cr is a frame with bounds B = A4 >

> alnl

nel’

0 if and only if
2

Vaelm®, Al|al|? < < B||a]|?.




Stable Analysis and Synthesis Operators

Frame synthesis operator

Proof of Theorem 5.1:

”Znel"a[n] ¢n||2
= ||d*al|* = (P*a, P*a)
= (a, ®d*a) = (dd*a, a)

Theorem 5.1;:
vaelm®, Al|all? < [|Zper aln] ¢ulI% < Bllall>

)

Theorem 5.1: A and B are the infimum and supremum
Vaelm®, Allal|? < (dDP*a,a) < Bl|all?. < values of the spectrum of ®®*

(|

Definition 5.1: PN A and B are the infimum and supremum
VieH,  A|lfll? < (D Df, f) < BlIfII> values of the spectrum of

In finite dimension, the maximum and minimum eigenvalues of ®d*and
on Im® are identical.(Im® is the image space of all ®f)



Stable Analysis and Synthesis Operators

Frame synthesis operator

When the frame vectors are normalized ||¢,,|| = 1, the frame redundancy is
measured by the frame bounds 4 and B.

Theorem 5.2: In a space of finite dimension N, a frame of P> N
normalized vectors has frame bounds A and B, which satisfy

A< <B
_N_ u
Foratigllt |I‘aI||eA — B — P/N

Proof: ®®*a[p] = (®*a, ¢p) = (Tper aln] dn, ¢p) = Zner alnl (dn, dp)

<¢1'¢1> <¢P’¢1> P
o S w@0) = ) [ du)l? = P

= OP* = : ) :
<¢1r ¢P> <¢P; ¢P> nﬁl
Since tr(dd*) = tr(®"®), and AN < tr(h @) = 2/1,; < BN
P i=1
— AN<P<BN=A<—<B A<A <B

=




Stable Analysis and Synthesis Operators
Redundancy

| Theorem 5.2: In a space of finite dimension N, a frame of P> N |

| normalized vectors has frame bounds 4 and B , which satisfy |
P

| A< <B :

!_Foratight frame A= B = P/N. I

" I LS SIS SIS SIS SESS BESS SIS DS DS DS DS S DS DS S S SESaas S SSaa BEaa SEaa Saaa S S S Ssssd

If {¢,,}.cr 1S @ normalized Riesz basis and is therefore linearly independent,
then it provesthat A < 1 < B. This result remains valid in infinite dimension.

The frame is orthonormal if and only if B = 1, in which case A = 1.

One can verify that a finite set of N vectors {¢,,}1<n<y IS always a frame of
the space V generated by linear combinations of these vectors.

When N increases, the frame bounds A and B may go respectively to 0 and
+ oco. This illustrates the fact that in infinite dimensional spaces, a family of
vectors may be complete and not yield a stable signal representation.



Stable Analysis and Synthesis Operators
Redundancy

Example 5.1: Let {g;,9,} be an orthonormal basis of an N = 2 two-

dimensional plane H. The P = 3 normalized vectors

91\/§ 91\/§

b1 = 9g1, P2= —7"'792» ¢p3= —7—792-

have equal angles of 2 /3 between each other. For any feH,

3
3
D K dul? =S IfI
n=1

Thus, these three vectors define a tight frame with A = B = 3/2.



Stable Analysis and Synthesis Operators

Core Equations

d*a = Z a[n] ¢,

ner
> alnl,

nel’

2
< Bllall®

VIR AIFI? < ) K. dull? < BIFIP.  vaelm, Allal? <

nel

VieH, AllIf]I? < ( . f) < BlIfl> Vaelm®, Al|a||? < (PD*aq, a) < Bl|al|?.



Dual Frame and Pseudo Inverse
Pseudo Inverse

The reconstruction of f from its frame coefficients ®f[n] is calculated with a
pseudo inverse . This pseudo inverse is a bounded operator that implements a

dual-frame reconstruction. For Riesz bases, this dual frame is a biorthogonal
basis.

Theorem 5.3: If {¢,, },,.r Is a frame but not a Riesz basis, then ® admits

an infinite number of left inverses.

Proof:

ImU: the image space of all Uf and by
NullU: the null space of all h, such that Uh = 0.
Nulld* = (Im®)? is the orthogonal complement of Im® in £2(T).

If ® is a frame and not a Riesz basis, then {¢,, },,¢r is linearly dependent

= Jda # 0,d*a = z a[n] ¢, = 0 = 3Ja # 0,a € Nulld* = (Imd)*

nerl




Dual Frame and Pseudo Inverse
Pseudo Inverse

Proof:

wIf AllflI*F < loflI*=0(A4>0)=
~ @ admits a left inverse.

There is an infinite inverses since the restriction of a left inverse to (Im®)+= {0}
may be any arbitrary linear operator.

The more redundant the frame {¢,, },,cr, the larger the orthogonal complement
(Im®)1 of Im® in £2(T). The pseudo inverse @7, is defined as the left
inverse that is zero on (Im®)+:

VfeH, ®*df =f and Vae(Imd)t, d*a = 0.

How to compute this pseudo inverse? —Theorem 5.4



Dual Frame and Pseudo Inverse
Pseudo Inverse

Theorem 5.4: Pseudo Inverse. If @ is a frame operator, then ®*® is
invertible and the pseudo inverse satisfies

Pt = (d*P) lop*

Proof:

a) v Ifd*0f =0= Alfll*> < Zperl{f, p)? = (@"Of, f) =0(A>0)=f =0
~ ®*®isinvertible. Forall VieH, (0 ®) 1o *df =f

= (®*®) " 1d* is a left inverse. Pseudo inverse definition:
b) (Im®)'= Nulld* = Vae(Imd)+, d*a =0 VfeH, ®*df =f and
= Vae(Imd)t, (¢* ) 1d*qg = 0 —Vae(Imd)L, dta = 0.
From a) and b), (®*®)~1d* is the pseudo inverse.




Dual Frame and Pseudo Inverse
Dual Frame

The pseudo inverse of a frame operator implements a reconstruction with a
dual frame —Theorem 5.5

Theorem 5.5: Let {¢,,},,. be a frame with bounds B > A > 0. The dual
operator defined by

vnel,®f[n] = (f, §n) with @, = (P ®) ¢,

satisfies
d* = ot (a)
and thus
f= Zner‘ (fr bn) Pn= ZneF(ff ¢n> ®n (b)
It defines a dual frame as
VIEH 2 IIf 1% < Znerlf, ) < S IFII (©)

If the frame is tight (i.e. A = B), then ¢,, = A™1¢,,.




Dual Frame and Pseudo Inverse
Dual Frame

Proof: (a)(b)

= (f, dn) P =d*d =1d = &*P = Id
= {f, (@"®) ) U L
= (@ D)7, ) f=oof f = @of
_ 0 0
=3O = o(P*P)? f= z (f, dn) an: Z(f' an) bn
nerl ner
= " = (¢*P) D
v Ot = (P*P) " 1p* —(b) proved

o & = d" —(a) proved




Dual Frame and Pseudo Inverse

Dual Frame
Proof: (c)
Definition 5.1:
vfeH, AllfII? < (@ of, f) < BIIfII =Vl AsL =5
J
VfeH, BUIfIE < (@ ®) 71, f) S ATHIIE = VfeH, <5<
||515f||2 = (P(P" D)7 f, D(P" D) f) A; is the eigenvalues of ®*®

= {f, (&' ®) 1" (@' ®) 1)
= {f, (@' ®)7Lf)

% is the eigenvalues of (®*®)~1

1 — - 1
VR ZIFIR < [ BF] = ) (F.6a)* < ZIFIP — (0 proved

nel



Dual Frame and Pseudo Inverse
Dual Frame

f= Zner‘ (f) dn) $n= Zne[‘ <f' an) bn
= Yner ©f [n] Ebn = Diner CT)f [n]idn

Theis theorem proves that f is reconstructed from frame coefficients ®f[n] =
(f, n) with the dual frame {¢n} _ .

The synthesis coefficients of f in {¢, }, are the dual-frame coefficients
CDf[n] = <f: ¢n) _
If the frame is tight (i.e. ¢,, = A~1¢,,) then both decompositions are identical:

F=2Y {00

ner



Dual Frame
Biorthogonal Bases

A Riesz basis is a frame of vectors that are linearly independent, so its dual
frame is also linearly independent.

i_Theorem 5.5:
Dual Riesz bases

I

| f= Zner‘<fr ¢n> an:ZneF(f gEn) bn :
1 -

: Ellfll2 < Z(f ¢n) =7 ||f||2 : are biorthogonal

families of vectors.

f=<l;l __________ ]

~ Linearly
¢P:Z<¢P’¢">¢" independent > (¢, ¢"=l [p—n]
nerl’
1 2 c 2 1 If normalized
Gloall" < D (00 8)” < 7ll0nl” TR < <

nel’



Dual Frame
Dual-Frame Analysis

Theorem 5.5:

f = Zner {f, Pn) $n22n6F<f' $n> Pn
T

{pn}ner is a frame of the and {¢,,} __ its dual frame.

What if {n}ner is a frame of 7= Yiner {f Pn) $n22n6F<fr d;n> ®n
a subspace V of the whole l

signal space and {¢n} __ its The best linear approximation of £ in V
dual frame? orthogonal projection of f inV

l

Theorem 5.6: Let {¢n}nr be a frame of Vand {¢,} . its dual
frame in V. The orthogonal projection of feH in V is

Pyf = Zne[‘ (fr ¢n> QBn:Zner(f» 6571) ¢n




Dual Frame
Dual-Frame Analysis

————— — — — — — — — —— — — — — — — — — — — — — — — — —

Dual-frame analysis operator

Pof = Y {fn) G 5
' nzr Pof = ) Bfnldn = ) (Pine) " 0f ]y
=) (o@D, e P
et Bf = (ODjpe) LOf
= (@O (f, budibn t
nel OPyf = PP*Pf = Of

= (@ Py) 10" Of

For sparse representation, the selection of {¢,},.r depends on the signal f,
computing the dual frame {¢, ] _. is inefficient



Frames

Q Translation-Invariant Dyadic Wavelet Transform)




Dyadic Wavelet Transform
Translation-invariant wavelet transform

Translation-invariant wavelet dictionaries are constructed by sampling the
scale parameter s while keeping all translation parameters wu.

1 t—uy s=2 _ P Y (e
Yuslt) = ﬁ ( S ) Sampling s | {lpu'zj(t) - V2i ( 27 )}uER,jez

wavelets Translation-invariant wavelet dictionaries

Wi 27) = (f,,.) j FO = () de = £+,

=

As In the case of orthogonal and biorthogonal wavelet bases, we construct a
scaling function ¢ and the corresponding wavelet 1 with a Fourier transform:

(s0-55()o(5). s -55)9(5) ]

Low-pass FIR filter band-pass FIR filter




Dyadic Wavelet Transform
Vanishing moments

The number of vanishing moments of i

the number of zeros of Y¥(w) at w = 0.
Apply $(0) = 1 S L Apply (@) = =4 (%) 6 (%)

the number of zeros of §(w) at w = 0.



Dyadic Wavelet Transform
Reconstructing Wavelets

¢<w>—Tl( 5)6(5) B = 1f( 1)9(2)

@=-%i(3)8(3)  d@=-+i(3)4(5)

Reconstructing wavelets are calculated with a pair of finite impulse response
dual filters h and g.

What’s the condition to guarantee that 1/3 IS a reconstruction wavelet ?

S

Theorem 5.13: (Reconstruction condition) If the filters satisfy
Vwel-m,7],  h(w)h* (@) + §(@)§" () =2,
then v is a reconstruction wavelet




Dyadic Wavelet Transform
Spline Dyadic Wavelets

: +1 . . .
A box spline of degree m: ¢ (w) = (Sma()‘;’z/z))m exp (_‘28“’) with & = {%) llffﬁllss i‘éedn

w —lEw
choosing g(w) = 0(w): G(w) = —iv2 SinfeXp< > >L —
The number of vanishing moments of Bw) = 1 (a)) 5 (2)

= The number of zeros of §(w) at w = 0 V2 Y

L - —iw (sin(a)/4)>m+2 exp (—lw(s + 1)

one vanishing moment wavelet:; =
J Ylw) =— w/4 4




Dyadic Wavelet Transform
Spline Dyadic Wavelets

. . m+2 . . m+1 .
P(w) = _;w (Slna()(})i4)> exp <_lw(i i D)» P(w) = <Sma()72/ 2)> exp (_lzgw)

Set m = 2, =1 and take inverse Fourier transform:

40, $(t)
| ' — 08f" |
o | o4l
-0.5/ |
N4 //// .

05 0 05 1 15 4 0 1 B



Dyadic Wavelet Transform
Fast Dyadic Transform

ln) = £ % 3 (0) = (£, by (€ = ) with ,y(0) = = 6 (£)
ajpq[n] = f = quﬂl (n)

41(@) = ) F(@+2km)Pes (@ + 2Kkm) Aoy #w) = L7(2) 4 (2)

k=—o0 i 2
+00 and let w = 2/t (w + 2km)

- Z f (@ + 2km) 271" (27 (w + 2km)) >

k=—c0

= Z f (@ + 2km)V27+1 x %E*(Zj (0 + 2km))$* (27 (w + 2km))

k=—o0

= (2 w) z f (@ + 2kmW21 ¢ (2 (w + 2km))

k=—o0

= h*(2/ w) z f (w + 2km)@};(w + 2km)

411 (@) = h*(2 w)a;(w)

aj(w)

Similarly, we can also get |d; 1 (0) = §*(2/ w)a;(w)




Dyadic Wavelet Transform
Fast Dyadic Transform

iy 1(0) = h*(2) 0)ad;(w), dij(w) =G (2 w)a;(w)

= &j(a))fz*(Zj w)fz(zf a)) + &j(a))g*(Zj a))ﬁ(Zj a))

= a;(w) [ﬁ*(Zj w)ﬁ(zj w)+ 3 (2 w)g(2’ a))]

= 2d;(w) Theorem 5.13: (Reconstruction condition)
Ywe|—m, ],

h(w)h* (@) + §(0)§*(w) = 2

1 - ) -
8)() = |11 (@h(2] ) + dj11 (0)F(2 ) |




Dyadic Wavelet Transform
Fast Dyadic Transform

8j+1(w) = a,i(w)ﬁ*(zf w), diy() =8d(w)g*(2) w)
aj(w) = 5 [&jﬂ(a))izl(Zj a)) + &j+1(w)g°(2j a)) ]

Inverse Fourier Transform

Theorem 5.14: foranyj > 0,
aj+1[n] = a; * i_lj[nL dj+1[n] =a; * g; [n],
and

1 -
a;[n] =5 (@1 hyn] + djiagj[nl)

Filter h;[n] is obtained by inserting 2/ — 1 zeros between each sample of h[n],
its Fourier transform is 7(2/ w).



Dyadic Wavelet Transform
Fast Dyadic Transform

% _hj —> 4] hj+1 > Y42 -
gj > dj+1 g_]-l—l > Y442
a]+1[n] = a; * h] [n] dj+1[n] = a;j * gj[n]
J J
aj+2 —— Hi+l —b—’a—)— X112 —— aj+1 —] ﬂ] —h-—{+'— x 1/2

dijy —»—

1+1

—»—d;




Dual Frame
Fast Dyadic Transform

The dyadic wavelet representation of a; Is defined as the set of
plus the remaining low-frequency information a;:

[ ra]]

Complexity :

If the input signal a,[n] has N samples, The maximum scale 2/ =N, and J = log, N.
Suppose that h and g have, respectively, K, and K, nonzero samples, h; and g; have
the same nonzero coefficients.

The calculation complexity is (K, + K, )N log, N.

N samples K; nonzero samples

4 hj —>— 4] hj+l —— A -

nonzero samples
g.
\_ J

g

> dj+1 gj+1 —=—dj

N
J = log, N iterations



Frames

Q Subsampled Wavelet Frames




Subsampled Wavelet Frames
Fast Dyadic Transform

1 t—u S = 2] { 1 t—u
£) = — . D=1y i(t) = — ( )}
l/)u,s( ) \/El/) ( - ) lpu,zf \/El/) 2] Yo jen
wavelets Translation-invariant dyadic wavelet dictionaries

wavelets Wavelet Frames

Intuitively, to construct a frame we need W
to cover the time-frequency plane with

- . n
the Heisenberg boxes of corresponding 577 -
discrete wavelet family.
What’s the conditions on ¥,a and uy SO al u,al

I 2

that {1 , (O} (myeq? 19 @ frame of L2 (R)? I :




Subsampled Wavelet Frames
Necessary Conditions

We suppose that y is real, normalized, and satisfies the admissibility condition:

+00"a) 2
C¢=j O
0 w

Theorem 5.15: Necessary Condition. If {1/Jj,n(t)}(j ez 19 3 frame of

L?(R), then the frame bounds satisfy
Cy

A<
Uglna

< B,

1 < .
YweR — {0}, Asu— 2 lY(a’w)|? < B
0

j==co

There are continuously differentiable wavelets that generate frames

In the general case, the dual frame of a wavelet frame is not a wavelet frame



Windowed Fourier Frames
Discretization

U = nu,

¢ =kéo

Windowed Fourier Atom Windowed Fourier Frames

Gus(t) = g(t — uw)esst s D ={gnr(®) =g(t— nuo)e”“fot}(n’k)ezz

w

The size of the Heisenberg box of Ju, &,

IS independent of u,, and &,. It depends _
on the time-frequency spread of the ¢ |

- E gunﬂ-
window g. A complete cover of the plane € =
IS obtained by translating these boxes ' ' "j@o *
over a uniform rectangular grid. ' ' U,




Windowed Fourier Frames
Necessary Condition

Theorem 5.19: Necessary Condition. The windowed Fourier family

{gn'k}(n,k)ezz is a frame of L*(R) only if
2T -1
UoSo
The frame bounds A and B necessarily satisfy

2T —
VteR, A< A z lg(t —nuy)|* < B
0

n=—w

VoeR A<— z 15(w — k&2 < B

k_—oo

There 1s no compactly supported, continuously differentiable window that
generates an orthogonal windowed Fourier basis (Balian-Low theorem)

The dual frame of a windowed Fourier frame is also a window Fourier frame




Wavelet Frames And Windowed Fourier Frames
Translation invariance

In both cases, the frame representation has the drawback of not being
translation invariant with respect to time or frequency. Most interesting signal
patterns are not naturally synchronized with frame intervals. In particular, the
structure of a signal may be degraded at the lower resolutions

This motivates the study of the dyadic wavelet transform, which is discrete in
scale but not in time

In practice, the dyadic wavelet transform is implemented by perfect
reconstruction filter banks. These fast filter banks correspond to wavelet bases
which are built from multiresolution approximations
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problem 5.13 and 5.15(a)(b) (A Wavelet Tour of
Signal Processing, 37 edition)
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