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Introduction

◆A signal representation may provide “analysis” coefficients that are

inner products with a family of vectors, or “synthesis” coefficients that

compute an approximation by recombining a family of vectors.

◆Frames are families of vectors where “analysis” and “synthesis”

representations are stable. Signal reconstructions are computed with a

dual frame.

◆Frames are potentially redundant and thus more general than bases,

with a redundancy measured by frame bounds. They provide the

flexibility needed to build signal representations with unstructured

families of vectors.

◆Complete and stable wavelet Fourier transforms are constructed with

frames of wavelets.



Frames

Frames and Riesz Bases1



◆The frame theory was originally developed to reconstruct band-limited signals

from irregularly spaced samples. The following frames definition gives an

energy equivalence to invert the operator Φ defined by

∀𝑛𝜖Γ,Φ𝑓 𝑛 = 𝑓, 𝜙𝑛 .

Stable Analysis and Synthesis Operators
Frame analysis operator

◼ Definition 5.1: Frame and Riesz Basis. The sequence 𝜙𝑛 𝑛𝜖𝛤 is a

frame of 𝚮 if there exist two constants 𝐵 ≥ 𝐴 > 0 such that

∀𝑓𝜖𝚮, 𝐴 𝑓 2 ≤෍

𝑛𝜖Γ

| 𝑓, 𝜙𝑛 |2 ≤ 𝐵 𝑓 2.

When 𝐴 = 𝐵, the frame is said to be tight. If the 𝜙𝑛 𝑛𝜖𝛤 are linearly

independent then the frame is not redundant and is called a Riesz basis.

Then Φ is called a frame analysis operator.

If satisfied



Stable Analysis and Synthesis Operators
Frame analysis operator

Definition 5.1:

∀𝑓𝜖𝚮, 𝐴 𝑓 2 ≤෍

𝑛𝜖Γ

| 𝑓, 𝜙𝑛 |2 ≤ 𝐵 𝑓 2.

◆ It is a necessary and sufficient condition guaranteeing that Φ is invertible on

its image space, with a bounded inverse.

◆ Thus, a frame defines a complete and stable signal representation, which

may also be redundant.



◆Let us consider the space of finite energy coefficients

ℓ2 Γ = 𝑎: 𝑎 2 = σ𝑛𝜖Γ 𝑎 𝑛 2 < +∞ .

Stable Analysis and Synthesis Operators
Frame synthesis operator

◆The adjoint Φ∗of Φ is defined over ℓ2 Γ and satisfies for any 𝑓𝜖𝚮 and

𝑎 ∈ ℓ2 Γ :

Φ∗𝑎, 𝑓 = 𝑎,Φ𝑓 =෍

𝑛𝜖Γ

𝑎 𝑛 𝑓, 𝜙𝑛
∗ = ෍

𝑛𝜖Γ

𝑎 𝑛 𝜙𝑛, 𝑓 .

◆The frame synthesis operator:

Φ∗𝑎 =෍

𝑛𝜖Γ

𝑎 𝑛 𝜙𝑛.

Φ∗Φ𝑓 =෍

𝑛𝜖Γ

Φ𝑓 𝑛 𝜙𝑛 =෍

𝑛𝜖Γ

𝑓, 𝜙𝑛 𝜙𝑛.

Let 𝑎 = Φ𝑓

Φ∗Φ𝑓, 𝑓 = Φ𝑓,Φ𝑓 = Φ𝑓 2 =෍

𝑛𝜖Γ

| 𝑓, 𝜙𝑛 |2



Stable Analysis and Synthesis Operators
Frame synthesis operator

Definition 5.1(Frame Condition):

∀𝑓𝜖𝚮, 𝐴 𝑓 2 ≤෍

𝑛𝜖Γ

| 𝑓, 𝜙𝑛 |2 ≤ 𝐵 𝑓 2.

Φ∗Φ𝑓, 𝑓 = Φ𝑓,Φ𝑓 = Φ𝑓 2 =෍

𝑛𝜖Γ

| 𝑓, 𝜙𝑛 |2

Definition 5.1(Frame Condition):

∀𝑓𝜖𝚮, 𝐴 𝑓 2 ≤ Φ∗Φ𝑓, 𝑓 ≤ 𝐵 𝑓 2.

𝐴 𝑓 2 ≤ 𝜆𝑖𝑓, 𝑓 ≤ 𝐵 𝑓 2

⟹ 𝐴 𝑓 2 ≤ 𝜆𝑖 𝑓 2 ≤ 𝐵 𝑓 2

⟹ 𝐴 ≤ 𝜆𝑖 ≤ 𝐵
Φ∗Φ𝑓 = 𝜆𝑖𝑓

𝜆𝑖 is the eigenvalues

in finite   dimension

⟹

◆𝐴 and 𝐵 are the smallest and

largest eigenvalues in finite

dimension.

◆The eigenvalues are also called

singular values of Φ or singular

spectrum.

◆𝐴 and 𝐵 are the infimum and

supremum values of the

spectrum of the symmetric

operator Φ∗Φ.



Stable Analysis and Synthesis Operators
Frame synthesis operator

frame analysis operator

Φ𝑓 𝑛 = 𝑓, 𝜙𝑛

frame synthesis operator

Φ∗𝑎 =෍

𝑛𝜖Γ

𝑎 𝑛 𝜙𝑛

◼ Theorem 5.1: The family 𝜙𝑛 𝑛𝜖𝛤 is a frame with bounds 𝐵 ≥ 𝐴 >

0 if and only if

∀𝑎𝜖𝐈𝐦Φ,𝐴 𝑎 2 ≤ ෍

𝑛𝜖Γ

𝑎 𝑛 𝜙𝑛

2

≤ 𝐵 𝑎 2.

Stable!

Definition 5.1(Frame Condition):

∀𝑓𝜖𝚮, 𝐴 𝑓 2 ≤෍

𝑛𝜖Γ

| 𝑓, 𝜙𝑛 |2 ≤ 𝐵 𝑓 2.



Stable Analysis and Synthesis Operators
Frame synthesis operator

Theorem 5.1:

∀𝑎𝜖𝐈𝐦Φ,𝐴 𝑎 2 ≤ σ𝑛𝜖Γ 𝑎 𝑛 𝜙𝑛
2 ≤ 𝐵 𝑎 2.

σ𝑛𝜖Γ 𝑎 𝑛 𝜙𝑛
2

= Φ∗𝑎 2 = Φ∗𝑎, Φ∗𝑎

= 𝑎,ΦΦ∗𝑎 = ΦΦ∗𝑎, 𝑎

Definition 5.1:

∀𝑓𝜖𝚮, 𝐴 𝑓 2 ≤ Φ∗Φ𝑓, 𝑓 ≤ 𝐵 𝑓 2.

Theorem 5.1:

∀𝑎𝜖𝐈𝐦Φ, 𝐴 𝑎 2 ≤ ΦΦ∗𝑎, 𝑎 ≤ 𝐵 𝑎 2.

𝐴 and 𝐵 are the infimum and supremum

values of the spectrum of Φ∗Φ

𝐴 and 𝐵 are the infimum and supremum

values of the spectrum of ΦΦ∗

⇕

◆ In finite dimension, the maximum and minimum eigenvalues of ΦΦ∗and Φ∗Φ
on 𝐈𝐦Φ are identical.(𝐈𝐦Φ is the image space of all Φ𝑓)

 Proof of Theorem 5.1:

⟺

⇕?

⟺



Stable Analysis and Synthesis Operators
Frame synthesis operator

 Proof: ΦΦ∗𝑎 𝑝 = Φ∗𝑎, 𝜙𝑝 = σ𝑛𝜖Γ𝑎 𝑛 𝜙𝑛, 𝜙𝑝 = σ𝑛𝜖Γ 𝑎 𝑛 𝜙𝑛, 𝜙𝑝

⟹ΦΦ∗ =
𝜙1, 𝜙1 ⋯ 𝜙𝑃, 𝜙1
⋮ ⋱ ⋮

𝜙1, 𝜙𝑃 ⋯ 𝜙𝑃, 𝜙𝑃

⟹ tr ΦΦ∗ = ෍

𝑛=1

𝑝

𝜙𝑛, 𝜙𝑛
2 = 𝑃

𝐴𝑁 ≤ tr Φ∗Φ =෍

𝑖=1

𝑁

𝜆𝑖 ≤ 𝐵𝑁

𝐴 ≤ 𝜆𝑖 ≤ 𝐵⟹ 𝐴𝑁 ≤ 𝑃 ≤ 𝐵𝑁 ⟹ 𝐴 ≤
𝑃

𝑁
≤ 𝐵

Since tr ΦΦ∗ = tr Φ∗Φ , and

◼ Theorem 5.2: In a space of finite dimension 𝑁, a frame of 𝑃 ≥ 𝑁
normalized vectors has frame bounds 𝐴 and 𝐵 , which satisfy

𝐴 ≤
𝑃

𝑁
≤ 𝐵.

For a tight frame 𝐴 = 𝐵 = 𝑃/𝑁.

◆When the frame vectors are normalized 𝜙𝑛 = 1, the frame redundancy is

measured by the frame bounds 𝐴 and 𝐵.



Stable Analysis and Synthesis Operators
Redundancy

◆ If 𝜙𝑛 𝑛𝜖𝛤 is a normalized Riesz basis and is therefore linearly independent,

then it proves that 𝐴 ≤ 1 ≤ 𝐵. This result remains valid in infinite dimension.

◆The frame is orthonormal if and only if 𝐵 = 1, in which case 𝐴 = 1.

◆One can verify that a finite set of 𝑁 vectors 𝜙𝑛 1≤𝑛≤𝑁 is always a frame of

the space 𝐕 generated by linear combinations of these vectors.

◆When 𝑁 increases, the frame bounds 𝐴 and 𝐵 may go respectively to 0 and

+∞. This illustrates the fact that in infinite dimensional spaces, a family of

vectors may be complete and not yield a stable signal representation.

Theorem 5.2: In a space of finite dimension 𝑁 , a frame of 𝑃 ≥ 𝑁
normalized vectors has frame bounds 𝐴 and 𝐵 , which satisfy

𝐴 ≤
𝑃

𝑁
≤ 𝐵.

For a tight frame 𝐴 = 𝐵 = 𝑃/𝑁.



◆Example 5.1: Let 𝑔1, 𝑔2 be an orthonormal basis of an 𝑁 = 2 two-

dimensional plane 𝚮. The 𝑃 = 3 normalized vectors

𝜙1 = 𝑔1, 𝜙2= −
𝑔1
2
+

3

2
𝑔2, 𝜙3= −

𝑔1
2
−

3

2
𝑔2.

have equal angles of 2𝜋/3 between each other. For any 𝑓𝜖𝚮,

෍

𝑛=1

3

𝑓, 𝜙𝑛
2 =

3

2
𝑓 2.

Thus, these three vectors define a tight frame with 𝐴 = 𝐵 = 3/2.

Stable Analysis and Synthesis Operators
Redundancy



Stable Analysis and Synthesis Operators
Core Equations

Φ∗𝑎 =෍

𝑛𝜖Γ

𝑎 𝑛 𝜙𝑛Φ𝑓 𝑛 = 𝑓, 𝜙𝑛

∀𝑓𝜖𝚮, 𝐴 𝑓 2 ≤෍

𝑛𝜖Γ

| 𝑓, 𝜙𝑛 |2 ≤ 𝐵 𝑓 2. ∀𝑎𝜖𝐈𝐦Φ, 𝐴 𝑎 2 ≤ ෍

𝑛𝜖Γ

𝑎 𝑛 𝜙𝑛

2

≤ 𝐵 𝑎 2

∀𝑎𝜖𝐈𝐦Φ,𝐴 𝑎 2 ≤ ΦΦ∗𝑎, 𝑎 ≤ 𝐵 𝑎 2.∀𝑓𝜖𝚮, 𝐴 𝑓 2 ≤ Φ∗Φ𝑓, 𝑓 ≤ 𝐵 𝑓 2.



Dual Frame and Pseudo Inverse

Pseudo Inverse

◆ The reconstruction of 𝑓 from its frame coefficients Φ𝑓 𝑛 is calculated with a

pseudo inverse . This pseudo inverse is a bounded operator that implements a

dual-frame reconstruction. For Riesz bases, this dual frame is a biorthogonal

basis.

◼ Theorem 5.3: If 𝜙𝑛 𝑛𝜖𝛤 is a frame but not a Riesz basis, then Φ admits

an infinite number of left inverses.

 Proof:

𝐈𝐦U：the image space of all 𝑈𝑓 and by

𝐍𝐮𝐥𝐥U： the null space of all ℎ, such that 𝑈ℎ = 0.
𝐍𝐮𝐥𝐥Φ∗ = (𝐈𝐦Φ)⊥ is the orthogonal complement of 𝐈𝐦Φ in ℓ2 Γ .

⟹ ∃𝑎 ≠ 𝟎,Φ∗𝑎 =෍

𝑛𝜖Γ

𝑎 𝑛 𝜙𝑛 = 0 ⟹ ∃𝑎 ≠ 𝟎, 𝑎 ∈ 𝐍𝐮𝐥𝐥Φ∗ = (𝐈𝐦Φ)⊥

If Φ is a frame and not a Riesz basis, then 𝜙𝑛 𝑛𝜖𝛤 is linearly dependent



Dual Frame and Pseudo Inverse

Pseudo Inverse
 Proof:

∵ If Φ𝑓 = 0 ⟹ 𝐴 𝑓 2 ≤ Φ𝑓 2 = 0 (𝐴 > 0)⟹ 𝑓 = 0

∴ Φ admits a left inverse.

There is an infinite inverses since the restriction of a left inverse to (𝐈𝐦Φ)⊥≠ {0}
may be any arbitrary linear operator.

◆The more redundant the frame 𝜙𝑛 𝑛𝜖𝛤, the larger the orthogonal complement

(𝐈𝐦Φ)⊥ of 𝐈𝐦Φ in ℓ2 Γ . The pseudo inverse Φ+, is defined as the left

inverse that is zero on (𝐈𝐦Φ)⊥:

∀𝑓𝜖𝚮, Φ+Φ𝑓 = 𝑓 and     ∀𝑎𝜖 𝐈𝐦Φ ⊥, Φ+𝑎 = 0.

➢ How to compute this pseudo inverse? ⟶Theorem 5.4



Dual Frame and Pseudo Inverse

Pseudo Inverse

◼ Theorem 5.4: Pseudo Inverse. If Φ is a frame operator, then Φ∗Φ is

invertible and the pseudo inverse satisfies

Φ+ = (Φ∗Φ)−1Φ∗

 Proof:

a)   ∵ If Φ∗Φ𝑓 = 0 ⟹ 𝐴 𝑓 2 ≤ σ𝑛𝜖𝛤 𝑓, 𝜙𝑛
2 = Φ∗Φ𝑓, 𝑓 = 0 (𝐴 > 0) ⟹ 𝑓 = 0

∴ Φ∗Φ is invertible.   For all ∀𝑓𝜖𝚮,    Φ∗Φ −1Φ∗Φ𝑓 = 𝑓

⟹ Φ∗Φ −1Φ∗ is a left inverse.

b)   (𝐈𝐦Φ)⊥= 𝐍𝐮𝐥𝐥Φ∗ ⟹ ∀𝑎ϵ 𝐈𝐦Φ ⊥, Φ∗𝑎 = 0

⟹ ∀𝑎ϵ 𝐈𝐦Φ ⊥, Φ∗Φ −1Φ∗𝑎 = 0

From a) and b), Φ∗Φ −1Φ∗ is the pseudo inverse.

Pseudo inverse definition:

∀𝑓𝜖𝚮, Φ+Φ𝑓 = 𝑓 and     

∀𝑎𝜖 𝐈𝐦Φ ⊥, Φ+𝑎 = 0.



Dual Frame and Pseudo Inverse

Dual Frame

◆The pseudo inverse of a frame operator implements a reconstruction with a

dual frame ⟶Theorem 5.5

◼ Theorem 5.5: Let 𝜙𝑛 𝑛𝜖𝛤 be a frame with bounds 𝐵 ≥ 𝐴 > 0. The dual

operator defined by

∀𝑛𝜖Γ, ෩Φ𝑓 𝑛 = 𝑓, ෨𝜙𝑛 with ෨𝜙𝑛 = (Φ∗Φ)−1𝜙𝑛
satisfies

෩Φ∗ = Φ+ (a)

and thus 

𝑓 = σ𝑛𝜖Γ 𝑓, 𝜙𝑛 ෨𝜙𝑛=σ𝑛𝜖Γ 𝑓, ෨𝜙𝑛 𝜙𝑛 (b)

It defines a dual frame as

∀𝑓𝜖𝚮,
1

𝐵
𝑓 2 ≤ σ𝑛𝜖Γ 𝑓, ෨𝜙𝑛

2
≤

1

𝐴
𝑓 2 (c)

If the frame is tight (i.e. 𝐴 = 𝐵), then ෨𝜙𝑛 = 𝐴−1𝜙𝑛.



Dual Frame and Pseudo Inverse

Dual Frame

 Proof: (a)(b)

෩Φ𝑓 𝑛 = 𝑓, ෨𝜙𝑛

= 𝑓, (Φ∗Φ)−1𝜙𝑛

= (Φ∗Φ)−1𝑓, 𝜙𝑛

= Φ(Φ∗Φ)−1𝑓 𝑛

⟹ ෩Φ = Φ Φ∗Φ −1

⟹ ෩Φ∗ = Φ∗Φ −1Φ

∵ Φ+ = (Φ∗Φ)−1Φ∗

∴ ෤Φ∗ = Φ+ ⟶(a) proved 

෩Φ∗Φ = Φ+Φ = Id ⟹ Φ∗෩Φ = Id⟹

𝑓 = ෩Φ∗Φ𝑓 𝑓 = Φ∗෩Φ𝑓

⟹

⟺
𝑓 =෍

𝑛𝜖Γ

𝑓, 𝜙𝑛 ෨𝜙𝑛=෍

𝑛𝜖Γ

𝑓, ෨𝜙𝑛 𝜙𝑛

⟺

⟶(b) proved 



Dual Frame and Pseudo Inverse

Dual Frame

 Proof: (c)

Definition 5.1:

∀𝑓𝜖𝚮, 𝐴 𝑓 2 ≤ Φ∗Φ𝑓, 𝑓 ≤ 𝐵 𝑓 2.

∀𝑓𝜖𝚮,𝐵−1 𝑓 2 ≤ (Φ∗Φ)−1𝑓, 𝑓 ≤ 𝐴−1 𝑓 2

∵ ෩Φ𝑓
2
= Φ(Φ∗Φ)−1𝑓,Φ(Φ∗Φ)−1𝑓

= 𝑓, (Φ∗Φ)−1Φ∗Φ(Φ∗Φ)−1𝑓

= 𝑓, (Φ∗Φ)−1𝑓

∴ ∀𝑓𝜖𝚮,
1

𝐵
𝑓 2 ≤ ෩Φ𝑓

2
=෍

𝑛𝜖Γ

𝑓, ෨𝜙𝑛
2
≤
1

𝐴
𝑓 2 ⟶(c) proved 

⟹
⟹ ∀𝑓𝜖𝚮,𝐴 ≤ 𝜆𝑖 ≤ 𝐵

⟸ ∀𝑓𝜖𝚮,
1

𝐵
≤
1

𝜆𝑖
≤
1

𝐴

𝜆𝑖 is the eigenvalues of Φ∗Φ

1

𝜆𝑖
is the eigenvalues of (Φ∗Φ)−1



Dual Frame and Pseudo Inverse

Dual Frame

◆Theis theorem proves that f is reconstructed from frame coefficients Φ𝑓 𝑛 =

𝑓, 𝜙𝑛 with the dual frame ෨𝜙𝑛 𝑛𝜖𝛤
.

◆The synthesis coefficients of 𝑓 in 𝜙𝑛 𝑛𝜖𝛤 are the dual-frame coefficients
෩Φ𝑓 𝑛 = 𝑓, ෨𝜙𝑛 .

◆ If the frame is tight (i.e. ෨𝜙𝑛 = 𝐴−1𝜙𝑛) then both decompositions are identical:

𝑓 =
1

𝐴
෍

𝑛𝜖Γ

𝑓, 𝜙𝑛 𝜙𝑛

𝑓 = σ𝑛𝜖Γ 𝑓, 𝜙𝑛 ෨𝜙𝑛= σ𝑛𝜖Γ 𝑓, ෨𝜙𝑛 𝜙𝑛

= σ𝑛𝜖Γ Φ𝑓 𝑛 ෩𝜙𝑛 = σ𝑛𝜖Γ
෩Φ𝑓 𝑛 𝜙𝑛

frame 

coefficient 
Dual frame 

coefficient 

Dual frame

vector

Frame 

vector



Dual Frame
Biorthogonal Bases

◆A Riesz basis is a frame of vectors that are linearly independent, so its dual

frame is also linearly independent.

Theorem 5.5:

𝑓 = σ𝑛𝜖Γ 𝑓, 𝜙𝑛 ෨𝜙𝑛=σ𝑛𝜖Γ 𝑓, ෨𝜙𝑛 𝜙𝑛
1

𝐵
𝑓 2 ≤෍

𝑛𝜖Γ

𝑓, ෨𝜙𝑛
2
≤
1

𝐴
𝑓 2

𝑓 = 𝜙𝑝

𝜙𝑝 =෍

𝑛𝜖Γ

𝜙𝑝, ෨𝜙𝑛 𝜙𝑛

1

𝐵
𝜙𝑝

2
≤෍

𝑛𝜖Γ

𝜙𝑝, ෨𝜙𝑛
2
≤
1

𝐴
𝜙𝑝

2

𝜙𝑝, ෨𝜙𝑛 = δ[𝑝 − 𝑛]

𝐴 ≤ 1 ≤ 𝐵

Dual Riesz bases

are biorthogonal

families of vectors.

If normalized

( 𝜙𝑛 =1)

Linearly 

independent



Dual Frame
Dual-Frame Analysis

𝜙𝑛 𝑛𝜖𝛤 is a frame of the whole signal space and ෨𝜙𝑛 𝑛𝜖𝛤
its dual frame.

Theorem 5.5:

𝑓 = σ𝑛𝜖Γ 𝑓, 𝜙𝑛 ෨𝜙𝑛=σ𝑛𝜖Γ 𝑓, ෨𝜙𝑛 𝜙𝑛

◼ Theorem 5.6: Let 𝜙𝑛 𝑛𝜖𝛤 be a frame of 𝐕 and ෨𝜙𝑛 𝑛𝜖𝛤
its dual

frame in 𝐕. The orthogonal projection of 𝑓𝜖𝚮 in 𝐕 is

𝑃𝐕𝑓 = σ𝑛𝜖Γ 𝑓, 𝜙𝑛 ෨𝜙𝑛=σ𝑛𝜖Γ 𝑓, ෨𝜙𝑛 𝜙𝑛

What if 𝜙𝑛 𝑛𝜖𝛤 is a frame of

a subspace 𝐕 of the whole

signal space and ෨𝜙𝑛 𝑛𝜖𝛤
its

dual frame?

The best linear approximation of 𝑓 in 𝐕
orthogonal projection of 𝑓 in 𝐕

?= σ𝑛𝜖Γ 𝑓, 𝜙𝑛 ෨𝜙𝑛=σ𝑛𝜖Γ 𝑓, ෨𝜙𝑛 𝜙𝑛



Dual Frame
Dual-Frame Analysis

Theorem 5.6:

𝑃𝐕𝑓 = σ𝑛𝜖Γ 𝑓, 𝜙𝑛 ෨𝜙𝑛=σ𝑛𝜖Γ 𝑓, ෨𝜙𝑛 𝜙𝑛

= ෩Φ∗Φ𝑓 =Φ∗෩Φ𝑓
Dual-frame synthesis operator Dual-frame analysis operator

𝑃𝐕𝑓 =෍

𝑛𝜖Γ

𝑓, 𝜙𝑛 ෨𝜙𝑛

=෍

𝑛𝜖Γ

𝑓, 𝜙𝑛 (Φ∗Φ𝐕)
−1𝜙𝑛

= (Φ∗Φ𝐕)
−1෍

𝑛𝜖Γ

𝑓, 𝜙𝑛 𝜙𝑛

= (Φ∗Φ𝐕)
−1Φ∗ Φ𝑓

𝑃𝐕𝑓 =෍

𝑛𝜖Γ

෩Φ𝑓[𝑛]𝜙𝑛 =෍

𝑛𝜖Γ

(ΦΦ𝐈𝐦Φ
∗ )−1Φ𝑓[𝑛]𝜙𝑛

෩Φ𝑓 = (ΦΦ𝐈𝐦Φ
∗ )−1Φ𝑓

Φ𝑃𝐕𝑓 = ΦΦ∗෩Φ𝑓 = Φ𝑓

◆For sparse representation, the selection of 𝜙𝑛 𝑛𝜖𝛤 depends on the signal 𝑓,

computing the dual frame ෨𝜙𝑛 𝑛𝜖𝛤
is inefficient.



Frames

Translation-Invariant Dyadic Wavelet Transform2



𝜓𝑢,𝑠 𝑡 =
1

𝑠
𝜓

𝑡 − 𝑢

𝑠

Dyadic Wavelet Transform 
Translation-invariant wavelet transform

◆Translation-invariant wavelet dictionaries are constructed by sampling the

scale parameter 𝑠 while keeping all translation parameters 𝑢.

𝑠 = 2𝑗

Translation-invariant wavelet dictionaries wavelets

Sampling 𝑠

◆ As in the case of orthogonal and biorthogonal wavelet bases, we construct a

scaling function 𝜙 and the corresponding wavelet 𝜓 with a Fourier transform:

𝒟 = 𝜓𝑢,2𝑗 𝑡 =
1

2𝑗
𝜓

𝑡 − 𝑢

2𝑗
𝑢𝜖ℝ,𝑗𝜖𝕫

𝑊𝑓 𝑢, 2𝑗 = 𝑓,𝜓𝑢,2𝑗 = න
−∞

∞

𝑓 𝑡
1

2𝑗
𝜓∗

𝑡 − 𝑢

2𝑗
𝑑𝑡 = 𝑓 ∗ 𝜓2𝑗 𝑢

Low-pass FIR filter band-pass FIR filter

෠𝜙 𝜔 =
1

2
෠ℎ
𝜔

2
෠𝜙
𝜔

2
, ෠𝜓 𝜔 =

1

2
ො𝑔
𝜔

2
෠𝜙
𝜔

2



Dyadic Wavelet Transform 
Vanishing moments

Apply ෠𝜓 𝜔 =
1

2
ො𝑔

𝜔

2
෠𝜙

𝜔

2

the number of zeros of ෠𝜓 𝜔 at 𝜔 = 0.

=
=

the number of zeros of ො𝑔 𝜔 at 𝜔 = 0.

The number of vanishing moments of 𝜓

Apply ෠𝜙 0 = 1



◆ Reconstructing wavelets are calculated with a pair of finite impulse response

dual filters ෨ℎ and ෤𝑔.

◆What’s the condition to guarantee that ෠෨𝜓 is a reconstruction wavelet ?

Dyadic Wavelet Transform 
Reconstructing Wavelets

෠𝜙 𝜔 =
1

2
෠ℎ
𝜔

2
෠𝜙
𝜔

2
෠𝜓 𝜔 =

1

2
ො𝑔
𝜔

2
෠𝜙
𝜔

2

෠෨𝜙 𝜔 =
1

2
෠෨ℎ
𝜔

2
෠෨𝜙
𝜔

2
෠෨𝜓 𝜔 =

1

2
෠෤𝑔
𝜔

2
෠෨𝜙
𝜔

2

dual dual

◼ Theorem 5.13: (Reconstruction condition) If the filters satisfy

∀𝜔𝜖 −𝜋, 𝜋 , ෠෨ℎ 𝜔 ෠ℎ∗ 𝜔 + ෠෤𝑔 𝜔 ො𝑔∗ 𝜔 = 2,

then ෠෨𝜓 is a reconstruction wavelet



Dyadic Wavelet Transform 
Spline Dyadic Wavelets

◆ A box spline of degree 𝑚: ෠𝜙 𝜔 =
sin(𝜔/2)

𝜔/2

𝑚+1
exp

−𝑖𝜀𝜔

2
with 𝜀 = ቊ

1 if 𝑚 is even
0 if 𝑚 is odd

ො𝑔 𝜔 = −𝑖 2 sin
𝜔

2
exp

−𝑖𝜀𝜔

2

෠𝜓 𝜔 =
−𝑖𝜔

4

sin(𝜔/4)

𝜔/4

𝑚+2

exp
−𝑖𝜔(𝜀 + 1

4

The number of vanishing moments of 𝜓
= The number of zeros of ො𝑔 𝜔 at 𝜔 = 0

෠𝜓 𝜔 =
1

2
ො𝑔
𝜔

2
෠𝜙
𝜔

2

◆ choosing ො𝑔 𝜔 = 𝑂(𝜔):

◆ one vanishing moment wavelet:



Dyadic Wavelet Transform 
Spline Dyadic Wavelets

෠𝜓 𝜔 =
−𝑖𝜔

4

sin(𝜔/4)

𝜔/4

𝑚+2

exp
−𝑖𝜔(𝜀 + 1)

4
, ෠𝜙 𝜔 =

sin(𝜔/2)

𝜔/2

𝑚+1

exp
−𝑖𝜀𝜔

2

𝜙(𝑡)𝜓(𝑡)

Set 𝑚 = 2, 𝜀=1 and take inverse Fourier transform:



Dyadic Wavelet Transform 
Fast Dyadic Transform

𝑎𝑗 𝑛 = 𝑓 ∗ ത𝜙2𝑗 𝑛 = 𝑓 𝑡 , 𝜙2𝑗 𝑡 − 𝑛 with 𝜙2𝑗 𝑡 =
1

2𝑗
𝜙

𝑡

2𝑗

𝑎𝑗+1 𝑛 = 𝑓 ∗ ത𝜙2𝑗+1 𝑛

ො𝑎𝑗+1(𝜔) = ෍

𝑘=−∞

+∞

መ𝑓 (𝜔 + 2𝑘𝜋) ෠𝜙
2𝑗+1
∗ 𝜔 + 2𝑘𝜋

= ෍

𝑘=−∞

+∞

መ𝑓 (𝜔 + 2𝑘𝜋) 2𝑗+1 ෠𝜙∗ 2𝑗+1(𝜔 + 2𝑘𝜋)

= ෍

𝑘=−∞

+∞

መ𝑓 (𝜔 + 2𝑘𝜋) 2𝑗+1 ×
1

2
෠ℎ∗ 2𝑗 (𝜔 + 2𝑘𝜋) ෠𝜙∗ 2𝑗(𝜔 + 2𝑘𝜋)

= ෠ℎ∗ 2𝑗 𝜔 ෍

𝑘=−∞

+∞

መ𝑓 (𝜔 + 2𝑘𝜋) 2𝑗 ෠𝜙∗ 2𝑗(𝜔 + 2𝑘𝜋)

= ෠ℎ∗ 2𝑗 𝜔 ෍

𝑘=−∞

+∞

መ𝑓 (𝜔 + 2𝑘𝜋) ෠𝜙
2𝑗
∗ 𝜔 + 2𝑘𝜋

ො𝑎𝑗+1(𝜔) = ෠ℎ∗ 2𝑗 𝜔 ො𝑎𝑗(𝜔)
ො𝑎𝑗(𝜔)

መ𝑑𝑗+1(𝜔) = ො𝑔∗ 2𝑗 𝜔 ො𝑎𝑗(𝜔)Similarly, we can also get

Apply ෠𝜙 𝜔 =
1

2
෠ℎ

𝜔

2
෠𝜙

𝜔

2

and let 𝜔 = 2𝑗+1(𝜔 + 2𝑘𝜋)



Dyadic Wavelet Transform 
Fast Dyadic Transform

ො𝑎𝑗+1(𝜔) = ෠ℎ∗ 2𝑗 𝜔 ො𝑎𝑗(𝜔),    መ𝑑𝑗+1(𝜔) = ො𝑔∗ 2𝑗 𝜔 ො𝑎𝑗(𝜔)

ො𝑎𝑗+1 𝜔 ෠෨ℎ 2𝑗 𝜔 + መ𝑑𝑗+1 𝜔 ෠෤𝑔 2𝑗 𝜔

= ො𝑎𝑗 𝜔 ෠ℎ∗ 2𝑗 𝜔 ෠෨ℎ 2𝑗 𝜔 + ො𝑎𝑗 𝜔 ො𝑔∗ 2𝑗 𝜔 ෠෤𝑔 2𝑗 𝜔

= ො𝑎𝑗 𝜔 ෠ℎ∗ 2𝑗 𝜔 ෠෨ℎ 2𝑗 𝜔 + ො𝑔∗ 2𝑗 𝜔 ෠෤𝑔 2𝑗 𝜔

= 2ො𝑎𝑗 𝜔 Theorem 5.13: (Reconstruction condition)

∀𝜔𝜖 −𝜋, 𝜋 ,
෠෨ℎ 𝜔 ෠ℎ∗ 𝜔 + ෠෤𝑔 𝜔 ො𝑔∗ 𝜔 = 2

ො𝑎𝑗(𝜔) =
1

2
ො𝑎𝑗+1 𝜔 ෠෨ℎ 2𝑗 𝜔 + መ𝑑𝑗+1 𝜔 ෠෤𝑔 2𝑗 𝜔



Dyadic Wavelet Transform 
Fast Dyadic Transform

ො𝑎𝑗+1(𝜔) = ො𝑎𝑗(𝜔)෠ℎ
∗ 2𝑗 𝜔 ,    መ𝑑𝑗+1(𝜔) = ො𝑎𝑗(𝜔) ො𝑔

∗ 2𝑗 𝜔

ො𝑎𝑗(𝜔) =
1

2
ො𝑎𝑗+1 𝜔 ෠෨ℎ 2𝑗 𝜔 + መ𝑑𝑗+1 𝜔 ෠෤𝑔 2𝑗 𝜔

◼ Theorem 5.14: for any 𝑗 ≥ 0 ,

𝑎𝑗+1 𝑛 = 𝑎𝑗 ∗ തℎ𝑗[𝑛],   𝑑𝑗+1 𝑛 = 𝑎𝑗 ∗ ҧ𝑔𝑗 𝑛 ,

and

𝑎𝑗 𝑛 =
1

2
𝑎𝑗+1 ෨ℎ𝑗 𝑛 + 𝑑𝑗+1 ෤𝑔𝑗[𝑛]

Inverse Fourier Transform

Filter ℎ𝑗[𝑛] is obtained by inserting 2𝑗 − 1 zeros between each sample of ℎ[𝑛], 

its Fourier transform is  ෠ℎ(2𝑗 𝜔).



Dyadic Wavelet Transform 
Fast Dyadic Transform

𝑎𝑗+1 𝑛 = 𝑎𝑗 ∗ തℎ𝑗[𝑛],   𝑑𝑗+1 𝑛 = 𝑎𝑗 ∗ ҧ𝑔𝑗 𝑛

𝑎𝑗 𝑛 =
1

2
𝑎𝑗+1 ෨ℎ𝑗 𝑛 + 𝑑𝑗+1 ෤𝑔𝑗[𝑛]



Dual Frame
Fast Dyadic Transform

◆The dyadic wavelet representation of 𝑎𝑗 is defined as the set of wavelet

coefficients up to a scale 2𝐽 plus the remaining low-frequency information 𝑎𝐽:

[{𝑑𝑗}1≤𝑗≤𝐽, 𝑎𝐽]

◆Complexity :

➢ If the input signal 𝑎0[𝑛] has 𝑁 samples, The maximum scale 2𝐽 =𝑁, and 𝐽 = log2𝑁.

➢ Suppose that ℎ and 𝑔 have, respectively, 𝐾ℎ and 𝐾𝑔 nonzero samples, ℎ𝑗 and 𝑔𝑗 have

the same nonzero coefficients.

➢ The calculation complexity is 𝐾ℎ + 𝐾𝑔 𝑁 log2𝑁.

𝑁 samples 𝐾ℎ nonzero samples

𝐾𝑔 nonzero samples

𝐽 = log2𝑁 iterations



Frames

Subsampled Wavelet Frames3



Subsampled Wavelet Frames
Fast Dyadic Transform

◆ Intuitively, to construct a frame we need

to cover the time-frequency plane with

the Heisenberg boxes of corresponding

discrete wavelet family.

𝜓𝑢,𝑠 𝑡 =
1

𝑠
𝜓

𝑡 − 𝑢

𝑠

𝑠 = 2𝑗

Translation-invariant dyadic wavelet dictionaries wavelets

𝒟 = 𝜓𝑢,2𝑗 𝑡 =
1

2𝑗
𝜓

𝑡 − 𝑢

2𝑗
𝑢𝜖ℝ,𝑗𝜖𝕫

𝜓𝑢,𝑠 𝑡 =
1

𝑠
𝜓

𝑡 − 𝑢

𝑠

𝑠 = 𝑎𝑗

Wavelet Frameswavelets

𝑢 = 𝑛𝑢0𝑎
𝑗

𝒟 = 𝜓𝑗,𝑛 𝑡 =
1

𝑎𝑗
𝜓

𝑡 − 𝑛𝑢0𝑎
𝑗

𝑎𝑗
(𝑗,𝑛)𝜖𝕫2

◆What’s the conditions on 𝜓, 𝑎 and 𝑢0 so

that 𝜓𝑗,𝑛 𝑡
(𝑗,𝑛)𝜖𝕫2

is a frame of 𝐋2(ℝ)?



Subsampled Wavelet Frames
Necessary Conditions

◆We suppose that 𝜓 is real, normalized, and satisfies the admissibility condition:

𝐶𝜓 = න
0

+∞ | ෠𝜓(𝜔)|2

𝜔
d𝜔 < +∞

◼ Theorem 5.15: Necessary Condition. If 𝜓𝑗,𝑛 𝑡
(𝑗,𝑛)𝜖𝕫2

is a frame of

𝐋2(ℝ), then the frame bounds satisfy

𝐴 ≤
𝐶𝜓

𝑢0 ln 𝑎
≤ 𝐵,

∀𝜔𝜖ℝ − 0 , 𝐴 ≤
1

𝑢0
෍

𝑗=−∞

∞

| ෠𝜓(𝑎𝑗𝜔)|2 ≤ 𝐵

◆ There are continuously differentiable wavelets that generate frames

◆ In the general case, the dual frame of a wavelet frame is not a wavelet frame



Windowed Fourier Frames
Discretization 

◆The size of the Heisenberg box of 𝑔𝑢𝑛,𝜉𝑘
is independent of 𝑢𝑛 and 𝜉𝑘. It depends

on the time-frequency spread of the

window 𝑔. A complete cover of the plane

is obtained by translating these boxes

over a uniform rectangular grid.

𝑔𝑢,𝜉 𝑡 = 𝑔 𝑡 − 𝑢 e𝑗𝜉𝑡
𝑢 = 𝑛𝑢0

Windowed Fourier FramesWindowed Fourier Atom

𝜉 = 𝑘𝜉0
𝒟 = 𝑔𝑛,𝑘 𝑡 = 𝑔 𝑡 − 𝑛𝑢0 e𝑖𝑘𝜉0𝑡

(𝑛,𝑘)𝜖𝕫2



Windowed Fourier Frames
Necessary Condition

◼ Theorem 5.19: Necessary Condition. The windowed Fourier family

𝑔𝑛,𝑘 (𝑛,𝑘)𝜖𝕫2
is a frame of 𝐋2(ℝ) only if

2𝜋

𝑢0𝜉0
≥ 1

The frame bounds 𝐴 and 𝐵 necessarily satisfy

𝐴 ≤
2𝜋

𝑢0𝜉0
≤ 𝐵,

∀𝑡𝜖ℝ, 𝐴 ≤
2𝜋

𝜉0
෍

𝑛=−∞

+∞

|𝑔 𝑡 − 𝑛𝑢0 |2 ≤ 𝐵

∀𝜔𝜖ℝ, 𝐴 ≤
1

𝑢0
෍

𝑘=−∞

+∞

| ො𝑔(𝜔 − 𝑘𝜉0)|
2 ≤ 𝐵

◆ There is no compactly supported, continuously differentiable window that

generates an orthogonal windowed Fourier basis (Balian-Low theorem)

◆ The dual frame of a windowed Fourier frame is also a window Fourier frame



Wavelet Frames And Windowed Fourier Frames

Translation invariance

◆ In both cases, the frame representation has the drawback of not being

translation invariant with respect to time or frequency. Most interesting signal

patterns are not naturally synchronized with frame intervals. In particular, the

structure of a signal may be degraded at the lower resolutions

◆This motivates the study of the dyadic wavelet transform, which is discrete in

scale but not in time

◆ In practice, the dyadic wavelet transform is implemented by perfect

reconstruction filter banks. These fast filter banks correspond to wavelet bases

which are built from multiresolution approximations



Homework
problem 5.13 and 5.15(a)(b) (A Wavelet Tour of 

Signal Processing, 3rd edition)



Many Thanks 

Q & A


